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Generalized Bethe approximation
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Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218

~Received 15 June 1998; revised manuscript received 22 October 1998!

We generalize the Bethe approximation by writing the activity of the system of interest relative to the
activity of the same system in the high-temperature limit~assumed known! times a function involving the
grand partition function for a small block of the system. The high-temperature limit of the system can involve
extended excluded volume effects that give rise to order-disorder phase transitions. The generalized Bethe
approximation can be viewed as an approximate method for adding the effect of attractions to a hard-particle
system. As an example we treat the lattice gas on the plane-square lattice with nearest-neighbor exclusion and
next-nearest neighbor attraction. The properties of the infinite-temperature limit~nearest-neighbor exclusion
only! are obtained using Pade´ approximants to low- and high-density series. The Bethe approximation then
adds in the effect of attractions and gives a phase diagram similar to that obtained from exact series.
@S1063-651X~99!09802-5#

PACS number~s!: 05.20.2y, 05.50.1q, 05.70.Fh, 05.70.Jk
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I. INTRODUCTION

The Bethe approximation is a combinatorial approach
cooperative systems~lattice models for fluids, magnets, a
loys, etc.! in which phase transitions and critical phenome
are found, the results generally being better than those fo
in mean-field theory for the same system. It was first int
duced as an approximate method to treat the statistical
chanics of alloys by Bethe@1# and then, in a different man
ner, by Guggenheim who showed that the two approac
were identical@2#. It is sometimes referred to as the Beth
Guggenheim approximation or as the quasichemical appr
mation. It is described clearly in the books by Hill@3,4#. An
important property of the Bethe approximation is that it
the exact solution@5# for the properties of a nontrivial sys
tem, namely, for ever-branching lattices, as illustrated in F
1 for the cases of three- and two-coordinate branching~the
latter case being the one-dimensional lattice!. Since the one-
dimensional lattice is a Bethe lattice, the Bethe approxim
tion is exact for the nearest-neighbor one-dimensional Is
model @6,7#.

In the present paper we show that the Bethe approxi
tion is equivalent to the following simple procedure. We ta
a small block of the lattice~in the simplest form this is jus
two contiguous lattice sites or a bond! and write the grand
partition function for the block using a special activityz that
takes into account the sharing of particles between neigh
ing blocks. Then ifz is the activity of the system of interes
this activity is given in the Bethe approximation by the fo
lowing expression:

z~r,T!

z~r,`!
5

z~r,T!

z~r,`!
~1.1!

or

z~r,T!5z~r,`!
z~r,T!

z~r,`!
. ~1.2!
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First we note that all of the activities correspond to the sa
net densityr. The quantityz(r,T) is the activity of the block
at a general temperatureT while z~r,`! is the activity of the
block at the same densityr but at an infinite temperature
~washing out all attractive interactions!. The quantityz(r,T)
is the approximate activity of the system of interest at d
sity r and general temperatureT while z(r,`) is the activity
of the system at the same density but at infinite temperat
the method requires that we are able to calculate the h
temperature limit of the activity of the system of interest.

The important feature of Eq.~1.2! is that the reference
system~high-temperature limit! can be a hard-particle lattic
gas that exhibits a gas-solid phase transition. The Bethe
proximation then adds in the perturbations due to attracti
that can introduce additional or altered phase transition
the system. It is thus a useful tool with which to investiga
multiple phase transitions in lattice gases.

FIG. 1. Illustration of Bethe~ever-branching! lattices. At each
junction there arec branches with no return loops.~a! The case of
c53. ~b! The case ofc52, which is equivalent to the one
dimensional lattice. The Bethe approximation is exact on such
tices.
1512 ©1999 The American Physical Society
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PRE 59 1513GENERALIZED BETHE APPROXIMATION
We will derive Eq.~1.1! in the next section. In the Ap
pendix we will show that Eq.~1.1! is a characteristic prop
erty of a branching Markov chain. Since the ever-branch
lattice, as illustrated in Fig. 1, can be treated exactly a
branching Markov chain, Eq.~1.1! implies that the Bethe
approximation is exact for such systems. The advantag
this generalized approach to the Bethe approximation is
all we need is the grand partition function for the block
lattice sites and the high-temperature limit of the system
interest. Once we have Eq.~1.1! there are no combinatoric
required. In Sec. III we illustrate the method for the Isi
model while in Sec. IV we apply the method to the latti
gas on the plane-square lattice with nearest-neighbor ex
sion and next-nearest-neighbor attraction. In the follow
paper @8# we use the generalized Bethe approximation
treat a lattice gas model that exhibits gas, liquid, and s
phases. The qualitative behavior of the phase diagrams fo
in the Bethe approximation for this system are corrobora
by results from exact series.

II. RATIO FORMULA

In this section we derive the ratio formula of Eq.~1.1!.
We begin by using the example of the standard Ising mo
for a lattice gas on the plane-square lattice as illustrate
Fig. 2. A site can be occupied or unoccupied by a particle~at
most one particle per site!, a feature illustrated in Fig. 2
respectively, by solid and open circles. Particles on nei
boring lattice sites experience an attractive energy of in
action. We takeM as the number of lattice sites,N as the
number of particles, andx5exp@2«/kT# as the Boltzmann
factor between nearest-neighbor occupied sites~where e is
the negative, or attractive, nearest-neighbor interaction
ergy!. Then the standard presentation@3,4# of the Bethe ap-
proximation writes the canonical partition function as fo
lows:

Q~M ,N,T!5C~M ,N!Q8~M ,N,T!, ~2.1!

where Q8 is the partition function for independent block
and C(M ,N) is a correction factor that gives the corre
value ofQ in the high-temperature limit~T→` or x→1!,

C~M ,N!5Q~M ,N,`!/Q8~M ,N,`!. ~2.2!

FIG. 2. Illustration of the Ising model on the plane-square l
tice. Each lattice site can be occupied by a particle~solid circle! or
not ~open circle!. At most one particle can occupy a lattice site a
particles on nearest-neighbor lattice sites experience an attra
energy of interaction.
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This of course requires that one know the high-tempera
limit Q(M ,N,`).

The blocks can be of any size and shape as long as
can cover all of the lattice sites in a regular manner. Sev
different blocks for the two-dimensional square lattice a
illustrated in Fig. 3. The blocks are placed on the lattice
that the sites on the border of one block overlap with those
the neighboring block. This feature is illustrated in Fig. 4~a!,
where we show the neighboring placement of two blocks
type~d! from Fig. 3. The same configuration is shown in Fi
4~b!, where we pull the blocks apart a small amount f
clarity. The fact that some particles and bonds are sha
between two blocks will be taken into account in the co

-

ive

FIG. 3. Illustration of blocks of lattice sites of various sizes
the plane-square lattice. Thev’s are geometric factors defined i
Eq. ~2.3! that relate the maximum number of such blocks to t
number of lattice sites.

FIG. 4. Illustrating of the overlapping of neighboring blocks.~a!
Two neighboring blocks of type~d! from Fig. 3. ~b! Simpler view
of the same block configuration.
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1514 PRE 59DOUGLAS POLAND
struction of the block grand partition function. A feature w
will not address here is the case where there are bonds
cross the boundary between two neighboring blocks. T
type of interaction can be treated using a mean-field appr
mation, but none of the models we will treat here and in
following paper@8# require this feature.

The maximum number of blocks that can be placed o
lattice is given by the relation

Nmax5vM . ~2.3!

The coefficientv is indicated for the various blocks show
in Fig. 3;v is usually less than 1 for large blocks but is 2 f
bonds@case~a! in Fig. 3# on the plane-square lattice. Th
original form of the Bethe approximation was given for t
simplest type of block, namely a pair of neighboring latti
sites. It was soon extended to larger blocks of lattice s
@9–11#.

To constructQ8 for a given type of block one first con
structs the canonical partition functionsqi(x) for the differ-
ent possible particle configurations in a block; if there arn
lattice sites in a block the indexi will run over 2n different
states. Theqi are simply products ofx factors reflecting the
number of bonds in a particular cluster. If a bond is in t
interior of a cluster it contributes a fullx factor toqi while if
it is on the edge of a cluster, so that it is shared with anot
cluster, it contributes a factorAx to qi . Taking Ni as the
number of blocks of typeI, Q8 is then given by summing
over all numbers and random arrangements of the block
the lattice,

Q8~M ,N,T!5(
$Ni %

~( iNi !!

P iNi !
)

i
qi

Ni5(
$Ni %

t$Ni%, ~2.4!

where thet$Ni% are defined by Eq.~2.4!. The sums over the
Ni are subject to the following two constraints:

(
i

Ni5vM ~conservation of blocks!, ~2.5!

(
i

n iNi5N ~conservation of particles!, ~2.6!

wheren i is the number of particles in configurationi that can
be assigned solely to that block@if a particle is on border site
in a block, it must be counted as shared by more than
block in the tally for the density in Eq.~2.6!#. We find the
most probable set of theNi subject to the above two con
straints by using the standard Lagrange-undetermin
multiplier method. We construct the following expression

] ln t

]Ni
1 ln a

]( jNj

]Ni
1 ln z

]( jn jNj

]Ni
50, ~2.7!

wherea andz are the undetermined multipliers whose val
is unknown at this stage. Using Stirling’s approximation f
the factorials in Eq.~2.4! and taking the required derivative
in Eq. ~2.7! gives the most probable value of the generalNi

~which we designate asNi* !,
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Ni*

( iNi*
5Pi5azn iqi . ~2.8!

The quantity given in Eq.~2.8! is simply the fraction, or
probability, of blocks of typei. The a multiplier is easily
eliminated by requiring that the sum over thePi is one

a51Y (
i

zn iqi ~2.9!

or

Pi5zn iqiY (
j

zn jqj . ~2.10!

The form of Eq.~2.10! suggests that we define a bloc
grand partition function, interpreting the undetermined m
tiplier z as a kind of activity,

j5(
i

zn iqi . ~2.11!

Then the probability of a block type is obtained in the sta
dard fashion,

Pi5
] ln j

] ln qi
. ~2.12!

Formally the quantityz can be determined by taking th
ratio of the constraint equations

( in iNi*

( iNi*
5

N

vM
5

r

v
~2.13!

or

r5v
] ln j

] ln z
, ~2.14!

where

r5N/M ~2.15!

andv is the geometric factor defined in Eq.~2.3!.
We now return to Eq.~2.1! and calculate the chemica

potential in the standard way,

bm~T!52
] ln Q

]N
52

] ln C

]N
2

] ln Q8

]N
. ~2.16!

Now

bm8~T!52
] ln Q8

]N
. ~2.17!

Using Eq.~2.2! we have

2
] ln C

]N
5bm~`!2bm8~`!, ~2.18!

which are the high-temperature limits of the two activitie
Combining~2.16!–~2.18! we have
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PRE 59 1515GENERALIZED BETHE APPROXIMATION
bm~T!2bm8~T!5bm~`!2bm8~`!. ~2.19!

The relation between the activity and the chemical poten
is

z5exp@bm2bm0#, ~2.20!

wherebm0 is the standard part of the chemical potential~for
lattice gases this is the momentum contribution!.

The grand partition function for the total system in t
block approximation can be written as

J85j~x,z!vM511¯1~zx2!M, ~2.21!

which illustrates thatz is the activity in the prime system
Thus we have

bm852
] ln Q8

]N
5 ln z. ~2.22!

Thus using Eqs.~2.20! and ~2.22! in Eq. ~2.19! gives the
ratio formula of Eq.~1.1!.

We can obtain an equation similar to Eq.~2.19! involving
the pressures. We start with Eq.~2.1! and instead of taking
the derivative with respect toN to give the chemical poten
tial we take the derivative with respect toM ~the analog of
the volumeV for the discrete system! obtaining

bp~T!5bp~`!1@bp8~T!2bp8~`!#, ~2.23!

where

bp8~T!5v ln j~T! and bp8~`!5v ln j~`!.
~2.24!

The quantitybp(1) is the high-temperature limit of the pre
sure for densityr, a quantity we assume that we know.

III. ISING MODEL

As a specific example we continue to use the Ising mo
on the plane-square lattice. We treat the simplest type
block that contains the possibility of a nearest-neighbor
teraction between particles, namely, the pair of sites ill
trated in Fig. 3~a!. Using 0’s and 1’s to indicate empty an
occupied lattice sites, respectively, there are four poss
states for a pair of contiguous lattice sites: 00, 01, 10,
11. The quantityj is then a sum over these four states.
using j of Eq. ~2.11! we require the exponentsv i that tell
how the particles in a particular configuration are shared
tween pairs of sites. It is convenient to factor the quantityzv i

into contributions from factors per site of the formza with a
characteristic value ofa for each different kind of lattice site
in the block. For the block we are considering an empty s
gets a factorz051(a50) while each occupied sites gets
factorz1/4 (a5 1

4 ); the 1
4 arises since, for a lattice with coor

dination numberc54, each occupied site is shared by fo
different bonds!. The j for this model is then

j5112z1/41xz1/2. ~3.1!

And this is all there is to constructing the Bethe approxim
tion for the Ising model on the plane-square lattice~no com-
binatorics!!.
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We then proceed by picking any set of values ofz andx
we want and calculating the density from Eq.~3.1!,

r5v
] ln j

] ln z
5

z1/41xz1/2

112z1/41xz1/2. ~3.2!

Given the above value ofr we then calculate the value o
z~1!, takingx51, required to give this same density, name

z~1!5S r

12r D 4

. ~3.3!

Next we require the exact value of the activity in the syst
of interest that also corresponds to the densityr. At x51 the
overall exact grand partition function is

J5~11z!M5epM/kT, ~3.4!

giving

p/kT5 ln~11z!52 ln~12r! ~3.5!

and

r5
z

11z
~3.6!

or

z~1!5
r

12r
. ~3.7!

Combining Eqs.~3.3! and~3.7!, and the initial value ofz(x),
we then have

z~x!5z~x!S z~1!

z~1! D5z~x!S 12r

r D 3

. ~3.8!

The pressure is given by

bp~x!52 ln~12r!1v@ ln j~x!2 ln j~1!#. ~3.9!

Equations~3.8! and ~3.9! give precisely the same results a
the conventional Bethe approximation@3,4#.

For the nearest-neighbor Ising model with general coo
nation numberc Eq. ~3.1! is

j5112z1/c1xz2/c ~3.10!

while Eq. ~3.8! becomes

z~x!5z~x!S 12r

r D C21

. ~3.11!

The pressure equation~3.9! is the same withv5c/2. We
note again that Eqs.~3.10! and ~3.11! are all there is to the
Bethe approximation for the Ising model on the level of pa
of sites. In the Appendix we show that Eq.~1.1! is a property
of branching Markov chains so Eqs.~3.10! and~3.11! are the
exact solution for ever-branching lattices as illustrated in F
1.

The Bethe approximation for the Ising model is of intere
since forc.2 it exhibits gas-liquid phase transitions and
critical point. For generalc the critical value ofx is
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1516 PRE 59DOUGLAS POLAND
xc5S c

c22D 2

, ~3.12!

which for the Ising model on the plane-square lattice giv
xc54 $which is to be compared@3,4# with the result from
standard mean-field theory for the same model ofxc5e
52.718 and the exact value ofxc5@1/(&21)#255.828%.
For c52 ~the 1d Ising model! xc50, which is equivalent to
Tc50, i.e., the critical temperature is absolute zero!.

The utility of an approximate method like the Bethe a
proximation is that for a very modest investment of effo
basically, Eq.~3.10!, one obtains an approximate indicatio
of the kind of phase transitions present in a system. T
phase-transition behavior is best seen using the fugacity

y5zxc/2, ~3.13!

which for c54 givesy5zx2. The reason that this variable
of interest is that Lee and Yang proved@12# that the phase-
transition singularities in any nearest-neighbor Ising mo
occur wheny51. In Fig. 5 we show the density as a functio
of fugacity for the Ising model on the plane-square lattice
x53, 4, and 5; since for this modelxc54 these values ofx
represent, respectively, the casesx,xc (T.Tc), x5xc (T
5Tc), and x.xc (T,Tc). Above the critical temperature
r(y) exhibits a typical sigmoidal shape; at the critical te
perature this function develops an inflection point at the m
point; and, below the critical temperature the function dev
ops the famous van der Waals loops. In Fig. 6 we show
pressurep/kT as a function of fugacity for the same cas
shown in Fig. 5. Now the development of a first-order pha
transition below the critical point is very clear: thep(y)/kT
curve develops a swallowtail kind of cusp. The swallowt
cusp itself is an artifact of the approximate method~the ther-
modynamic behavior in the cusp region is nonphysical!, so
one simply removes the cusp, leaving the crossing
branches of thep(y)/kT curve representing the gas and li
uid phases.

Lee and Yang@12# proved that a phase transition corr
sponds to a singularity in the grand partition function~or,
equivalently, in the pressure!. The kink in thep(y)/kT curve
left when the cusp is removed is the phase-transition sin
larity in the Bethe approximation. In Fig. 7 we interpret t
case ofx55 using parts of Figs. 5 and 6. Fig. 7~a! shows the
pressure with the swallowtail cusp as given in Fig. 6. In F
7~b! the cusp is removed, leaving the kink where t
branches of the function crossed. To obtain the densitie
the gas and liquid phases at the phase-transition point
takes the slope ofp/kT on either side of the singularity
point. UsingL and H as symbols for the gas~L5 low den-
sity! and liquid ~H5high density! states one has

rL5S ]bp

] ln yD
y2

and rH5S ]bp

] ln yD
y1

, ~3.14!

where the subscriptsy2 andy1 indicate that the slope is to
be evaluated aty51 on the sidesy,1 and y.1, respec-
tively. The above slopes are schematically illustrated in F
7~b! where the densities so obtained are then used in
7~c! to interpret the loops in ther(y) curve as a jump dis-
continuity in the density at the first-order phase transition.
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course this procedure is equivalent to the Maxwell equal-a
construction, but it is simpler to implement in that one can
p(y)/kT to a polynomial on either side of the kink and the
calculate the crossing point~and the slopes at the crossin
point! analytically. Knowing the gas and liquid densities
the phase transition as a function of temperature then g
the coexistence curve. One should note that the mean-
approximation shows the same qualitative behavior found
Figs. 5 and 6.

Hill @3# has pointed out that the mean-field~or Bragg-
Williams! approximation for the Ising model can be cast
the form of an average grand partition function per latt
site. Since this is not strictly a proper grand partition fun
tion, it is useful to point out the differences between th
function and the block grand partition functions we are u
ing. For the nearest-neighbor Ising model the mean-field
nonical partition function forN particles onM sites with
coordination numberc is given by

FIG. 5. The density as a function of fugacity@see Eq.~3.13!# for
the Bethe approximation for the Ising model as given by Eq.~3.8!
for three different temperatures~x53, T.Tc ; x54, T5Tc ; and
x55, T.Tc!.
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Q5
M !

~M2N!!N!
~xc/2!u, ~3.15!

where u5N/M which is the same as the densityr. The
activity and the pressure are obtained using Eq.~2.4!,

bp52 ln~12r!2~c/2!r2 ln x, ~3.16!

ln z5 ln@r/~12r!#2cr ln x. ~3.17!

Now instead of usingQ we write an average grand partitio
function per site as follows:

j511zxcu. ~3.18!

Then the probability a site is occupied~the densityr! is

r5
zxcu

11zxcu . ~3.19!

FIG. 6. The pressurep/kT as a function of fugacity for the sam
systems as illustrated in Fig. 5. For the case ofx.xc (T,Tc) the
function develops the swallowtail cusp that is the signature o
first-order phase transition.
But r5u and solving Eq.~3.19! for z we obtain Eq.~3.17!.
However, if we interpretj of Eq. ~3.18! as a proper grand
partition function and take the appropriate derivative to o
tain the pressure we getbp5 ln j5ln@r/(12r)#, which is in-
correct. We can obtain the correct pressure by usingz of Eq.
~3.17! and the standard thermodynamic relation

bp5E r
] ln z

]r
dr. ~3.20!

The j of Eq. ~3.18! is a strange construction for several re
sons. First, it containsxc while we would expectxc/2, as in
Eq. ~3.15!, since every bond is shared by two particles. S
ond, it explicitly contains the density rather than the activi
And third, it does not give the proper pressure directly.

IV. LATTICE GAS WITH EXCLUSION AND ATTRACTION

Our main purpose in this section is to treat the lattice g
on the plane-square lattice with nearest-neighbor exclus

a

FIG. 7. A comparison of the curves from Figs. 5 and 6 for t
case ofx55.xc . ~a! The pressure curve shown in Fig. 6.~b! The
same curve as in~a! with the nonphysical swallowtail cusp re
moved. The symbolsrL andrH indicate gas~low! and liquid~high!
densities, respectively, that are determined by the slope of the p
sure curve on either side of the phase transition singularity.~c!
Interpretation of the curve shown in Fig. 5 adding a vertical disc
tinuity betweenrL andrH determined as indicated in~b!.
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1518 PRE 59DOUGLAS POLAND
and next-nearest-neighbor attraction using the general
Bethe approximation. Before turning to that model it is us
ful first to briefly consider how fast the properties of th
Ising model in two-dimensions converge to the exact res
when the block size is increased. Using the blocks~b!, ~d!,
and~f! shown in Fig. 3 for the plane-square Ising model t
critical values ofx arexc53.171, 4.000, and 4.205, respe
tively ~compared to the exact valuexc55.823!. We have
already noted thatxc54 for the simplest type of block@block
~a! in Fig. 3#. Thus in going from block~a! to block ~b! the
estimate of the critical point gets worse@block ~a! gives the
exact solution for a Bethe lattice#. If one plotsuc51/xc ver-
sus 1/n ~labeling the blocks~b!, ~d!, and~f! asn51,2,3! one
gets a smooth curve pointed toward the exact value ofuc
50.1716, but the rate of convergence to the exact resu
very slow. Indeed, the main value of the Bethe approxim
tion is not in calculating accurate critical parameters, but a
simple means of obtaining qualitatively correct phase d
grams for complex systems.

In Fig. 8~a! we reproduce block~f! and indicate represen
tative values of the exponenta required to construct the
block grand partition functionj. Recall thata measures the
extent to which a particle at a particular site in a block
shared with neighboring blocks. Thus an interior site tha
not shared at all hasa51, an edge site that is shared b
tween two blocks hasa5 1

2 and a corner site that is share

FIG. 8. Illustration of large blocks for the plane-square lattic
~a! A large square block for treating the nearest-neighbor Is
model. The values ofa are shown for typical sites and indicate th
nature of the factorza to be assigned to each type of site wh
occupied by a particle. The values ofa are determined by how
many neighboring blocks would share a site and area51 ~interior
site, no sharing!; a5

1
2 ~side site, share with one other block!; and

a5
1
4 ~corner site, share with four other blocks!. ~b! Maximum

density of particles in the block shown in~a! with nearest-neighbor
exclusion; the diagonal lines indicate next-nearest-neighbor bo
ed
-

ts

is
-
a
-

s

between four blocks hasa5 1
4 . The correct assignment of th

a’s through theza factors in the construction ofj is the
crucial part of the generalized Bethe approximation. For
large square indicated in Fig. 8~a! the critical value ofx
~marking the value ofx at which one first obtains the swa
lowtail cusp illustrated in Fig. 7! is xc54.025. In Fig. 9 we
illustrate the variation of the density and the pressure
function of fugacity for block~f! at x5xc . For the large
square one sees that the density curve is very sharp ind
reflecting the very flat nature of the coexistence curve for
Ising model in two dimensions.

The lattice gas model on the plane-square lattice w
nearest-neighbor exclusion has been studied by many au
as a prototype model for the gas-solid phase transition~in
contrast to the gas-liquid phase transition exhibited by
standard Ising model!. Early treatments were given by Gau
and Fisher@13#, Runnels and Combs@14#, and Ree and
Chestnut@15# while more recent investigations have be
given by Poland@16#, Baram and Fixman@17#, and Todo and
Suzuki @18#.

The central feature of the model is that at high density
particles must sit on alternating lattice sites due to the
quirement of nearest-neighbor exclusion. Since there are
sets of alternating sites~two sublattices!, the system must
pick one of them~sublattice ordering!. It is found that there
is a second-order phase transition in the system that m
the onset of sublattice order. Only one lattice gas model w
excluded volume has been solved exactly and that is
hard-hexagon model of Baxter@19#. That model has a

.
g

s.

FIG. 9. The nearest-neighbor Ising model treated with the la
block of Fig. 8~a!. ~a! The density as a function of fugacity.~b! The
pressure as a function of fugacity. Both curves are evaluated a
critical value ofx (xc54.2048) for the approximation shown.
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second-order phase transition at a critical value of the ac
ity given by zc511.09. For the model with nearest-neighb
exclusion on the plane-square lattice, the value of the acti
at which this transition occurs is known@18# with very high
accuracy~uncertainty in the last digit!

ln zc51.334 015 10~1! ~4.1!

or ~rounding off!

zc53.796 255. ~4.2!

The critical value of the density is@13–15#

rc50.3678~1!. ~4.3!

We now apply the generalized Bethe approximation to
above model with the added feature of next-nearest-neigh
attractions. The phase diagram of this model has been
tained using exact series expansion@20#, so we have a com
parison for the results obtained from the Bethe approxim
tion. We have previously compared the results obtained fr
exact series with those obtained from the Bethe approxi
tion for another system@21#.

For the generalized Bethe approximation we require
pressure and the activity as a function of density in the hi
temperature limit, i.e., the model with nearest-neighbor
clusion described above. Thus our reference system in
generalized Bethe approximation already has a critical p
~second-order phase transition marking the onset of sub
tice order!. Both low- and high-density activity series a
known for this high-temperature limit as a by-product
series for the Ising model@13#. Baxter, Enting and Tsang
@22# have given 42 terms in the low-density series and
terms in the high-density series. We will use a modest nu
ber of these terms~15 terms in the low-density series, nin
terms in the high-density series! to construct Pade´ approxi-
mants for the required functions from both the low-and hig
density sides. We convert the activity series to density se
and then use a~ 7

8! Padéapproximant to fit the low-density
functions and a~ 4

5! Padéapproximant to fit the high-densit
functions. Forr,rc we use the low-density branches, whi
for r.rc we use the high-density branches@rc given in Eq.
~4.3!#. The Pade´ approximants do not quite match atrc so
we add a correction~tenth order in the density! to the high-
density functions so that there is no discontinuity where
branches join. The functionsz(r) and p(r)/kT obtained in
this manner are shown in Fig. 10 where the solid dots m
the position of the critical point. One sees that the seco
order phase transition in the hardcore system involves on
subtle inflection in the curves atrc .

We now add in next-nearest-neighbor attractions. Th
interactions are illustrated by the diagonal lines in Fig. 8~b!
which shows the close-packing limit for the block shown
Fig. 8~a!. Nearest-neighbor exclusion forces the particles
sit on alternate sites and the next-nearest-neighbor attrac
reinforce that structure. Thus the two types of interact
both favor sublattice order. From our study of this mod
using exact series@20# we found that the second-order tra
sition persists as the temperature is lowered from infin
down to a tricritical temperature below which the transiti
becomes first order. The tricritical point is where the gas a
v-
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the two sublattice phases are all in equilibrium. We es
mated the following tricritical parameters:

xtcp53.65 and r tcp50.29. ~4.4!

We also obtained exact low-temperature expansions of
fugacity and density~low and high! along the gas-solid co
existence curve. The appropriate low-temperature param
is

u51/x, ~4.5!

wherex5exp@2«/kT# is the Boltzmann factor for the next
nearest-neighbor interaction.

To apply the generalized Bethe approximation to t
model we require, in addition to the high-temperature lim
for the activity and the pressure shown in Fig. 10, the gra
partition functionj for the block of lattice sites shown in Fig
8~b!. Since there are 16 lattice sites in the block,j is a sum
over 216 different particle configurations~many of these are
forbidden due to nearest-neighbor exclusion!. All of the
terms in j are products of the Boltzmann factorx for the
attractive interactions and the block activityz. The exponents
for the site factorsza are illustrated in Fig. 8~a! ~where we
havea5 1

4 , 1
2, and 1, respectively, for corner, edge, and

terior sites!. We have chosen the block shown in Fig. 8~b! for
this model specifically because there are no interactions
tween particles in the interior of one block with those in t

FIG. 10. The high-temperature limit for the model with neare
neighbor exclusion and next-nearest-neighbor attraction. The cu
show Pade´ approximants based on exact low- and high-density
tivity series. ~a! The pressure as a function of fugacity.~b! The
density as a function of fugacity. The solid dot in each curve in
cates the second-order phase transition marking the onset of su
tice order.
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1520 PRE 59DOUGLAS POLAND
interior of a neighboring block~a feature discussed prev
ously in connection with Fig. 4!.

We show typical behavior of the density and pressure a
function of fugacity (y5zx2) in Fig. 11 for the case ofx
53. The density curve shows van der Waals loops while
pressure curve has a swallowtail cusp, indicating a first-or
phase transition~as described in Fig. 7!. We find that the
first-order phase transition vanishes only asx→1. Thus in
the Bethe approximation the tricritical temperature is infini
In Fig. 12 we show the density and fugacity phase diagra
showing the locus of the phase transition singularities a
function of the low-temperature parameteru defined in Eq.
~4.5!. The phase diagrams given in Fig. 12 are qualitativ
similar to those obtained from exact series@20#, except that
in the Bethe approximation the transition is first order up
x51. In particular, the behavior ofys(u), the locus of the
fugacity singularities, given by the generalized Bethe
proximation is quite accurate. The main feature of the mo
obtained from both the Bethe approximation and by ex
series is that at all temperatures there is one transition f
gas to solid.

In the following paper@8# we will treat a model similar to
the one just presented but with the added feature of ha
two types of attractive interaction, one of which does n
reinforce the sublattice structure favored by nearest-neigh
exclusion. Both the generalized Bethe approximation and
act series indicate that the model exhibits a typical g
liquid-solid phase diagram.

FIG. 11. The lattice gas with nearest-neighbor exclusion
next-nearest-neighbor attraction treated with the large block of
8~b!. ~a! The density as a function of fugacity.~b! The pressure as a
function of fugacity. Both curves are evaluated at the critical va
of x53. There is a swallowtail cusp, indicating a first-order pha
transition, for allx.1. At all temperatures there is only one pha
transition.
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APPENDIX

In this appendix we show that Eq.~1.1! is a property of
branching Markov chains. We begin by considering the p
ticle configurations~I! and ~II ! for the square-planar lattice
shown in Fig. 13. They show a central lattice site surround
by its four nearest neighbors. In~I! all of the sites are empty
while in ~II ! the central site is filled. The probabilities o

d
g.

e
e

FIG. 12. The phase diagram for the lattice gas with near
neighbor exclusion and next-nearest-neighbor attraction tre
with the large block of Fig. 8~b!. The upper graph shows the coe
istence curve giving the low- and high-density sides of the fir
order phase transition as a function of the low-temperature par
eter u51/x. The lower graph shows the phase-transition value
the fugacity as a function ofu.

FIG. 13. Lattice configurations for the treatment of branchi
Markov chains.
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these two structures can be written as

PI5J8~1/J! and PII5J8~z/J!, ~A1!

whereJ is the total grand partition function of the syste
and J8 is the grand partition function for all of the othe
particles outside of the central quintet of sites. Since inter
tions in this model are strictly nearest-neighbor,J8 is the
same for~I! and ~II !. Thus the ratio of the probabilities i
exactly

PII /PI5z. ~A2!

Now the central property of a branching Markov chain
that the probabilities of structures like~I! and ~II ! can be
written in the form

PI5p0P~0u0!4 and PII5P1P~1u0!4, ~A3!

wherep0 andp1 and thea priori probabilities that any site is
empty or occupied, respectively, andP( i u j ) is the condi-
tional probability that given statei, statej follows. Using the
definition of conditional probability~wherepi j is the prob-
ability of finding the nearest-neighbor sequencei - j ! one has

pi j 5pi P~ i u j ! or P~ i u j !5pi j /pi. ~A4!

Putting all of this together gives~taking p15r and p051
2r! for general coordination numberc,

PII /PI5S p01

p00
D cS 12r

r D c21

5z. ~A5!

We now turn to the grand partition function for a pair
sites in the Bethe approximation. For all Ising models
have

j5112z1/c1xz2/c. ~A6!

In this formulation, the probabilities of the various types
bonds are

p0051/j, p105p015z1/c/j, p115xz2/c/j. ~A7!

Using the above probabilities in Eq.~A5! gives

S 12r

r D c21

z~x!5z~x! ~A8!

with a similar equation for the high-temperature limit
c-

e

f

S 12r

r D c21

z~1!5z~1!. ~A9!

The ratio of these two equations gives

z~x!/z~1!5z~x!/z~1!, ~A10!

which is our ratio formula of Eq.~1.1!.
We note in passing that one of course does not need

Bethe approximation of Eq.~A6! to proceed from Eq.~A5!
to a final answer. One need only consider the case of
lattice quintets~III ! and~IV ! shown in Fig. 13. Proceeding in
the same manner as before, the ratio of the probabilitie
these two structures is~we give the result for general coor
dination numberc!

PIV /PIII 5zxcS p11

p01
D cS p0

p1
D c21

. ~A11!

Then we use the constraints

p011p005p0 , p111p105p1 , p105p01, ~A12!

which gives~again usingp15r andp0512r!

p00512r2p01, p115r2p01. ~A13!

Taking the ratio of Eq.~A11! to ~A5! gives

x5~r2p01!~12r2p01!/p01
2 , ~A14!

which can be solved forp01 in terms of given values ofx and
r ~it is quadratic inp01 independent ofc!. Then one can use
the result of Eq.~A14! in either Eq.~A5! or ~A11! to give z
as an explicit function ofx andr,

z5S 12r

r D c21S 1

f ~x,r!21D c

, ~A15!

where

f ~x,r!5
2~x21!~12r!

A114r~12r!~x21!21
. ~A16!

This is straightforward, but the use of Eq.~A6! directly is
much simpler. Referring to equations in the text, Eq.~3.11!,
using z from Eq. ~3.10!, gives exactly the samez(x,r) as
does Eq.~A15!.
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